

Published on Web 07/14/2009

Characterization of Structurally Unusual Diiron N_xH_y Complexes

Caroline T. Saouma, Peter Müller, and Jonas C. Peters*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received May 15, 2009; E-mail: jcpeters@mit.edu

Mechanistic proposals concerning the pathway of N2 reduction in biology at the MoFe-cofactor of nitrogenase continue to be advanced.¹ In addition to nitrogen, hydrazine² and diazene^{1a} are nitrogenase substrates, and recent DFT calculations and spectroscopic studies suggest that whereas initial N₂ binding may occur at one iron center, diiron pathways may be involved at certain $N_{y}H_{y}$ intermediate stages en route to ammonia formation.^{1a,3} In this broad context, recent work has explored the synthesis and spectroscopic characterization of structurally unusual mono- and bimetallic iron complexes featuring nitrogenous ligand functionalities.^{4,5} The demand for such model complexes continues in light of recent ENDOR and ESEEM spectroscopic data that has been obtained under turnover conditions at the cofactor.^{1a,2,6} To date, there are few synthetic iron systems that feature parent hydrazine (N_2H_4) ,⁷ hydrazido (N₂H₂²⁻), diazene (N₂H₂),⁸ amide (NH₂⁻),⁹ and imide (NH²⁻)^{4d} ligands. Herein we describe the synthesis and characterization of a series of structurally distinct diiron complexes that feature each of these ligand types.

Entry into the N_xH_y chemistry of present interest is realized with the iron(II) alkyl precursors $[PhBP_{3}^{R}]FeMe \{[PhBP_{3}^{R}] = PhB (CH_2PR_2)_3^-$; R = Ph, CH₂Cy}. These high-spin complexes are prepared either by addition of excess Me2Mg to a benzene solution of [PhBP^{Ph}₃]FeCl or by addition of MeLi to a thawing THF solution of [PhBP^{CH₂Cy₃]FeCl. The room-temperature addition of 1 equiv of} hydrazine to yellow THF solutions of either [PhBPPh3]FeMe (1) or [PhBP^{CH₂Cy₃]FeMe (2) results in the immediate release of methane} and clean conversion to red and diamagnetic {[PhBP^{Ph}₃]Fe}₂(μ - η ¹: η^1 -N₂H₄)(μ - η^2 : η^2 -N₂H₂) (**3**) or purple and diamagnetic {[PhBP^{CH₂Cy₃]-} Fe} $_{2}(\mu-\eta^{1}:\eta^{1}-N_{2}H_{4})(\mu-\eta^{2}:\eta^{2}-N_{2}H_{2})$ (4), respectively (Scheme 1). The solid-state structures of the diiron cores of 3 and 4 are nearly identical [see the Supporting Information (SI)]; that of 3 is shown in Figure 1. Its two iron centers are bridged by N₂H₄ and N₂H₂²⁻ ligands. We assign the end-on bridging ligand as N2H4 and the sidebonded bridging ligand as $N_2H_2^{2-10}$ The N3-N4 bond distance of 1.429(3) Å in 3 is consistent with an N-N single bond, and hence, this ligand is best assigned as $N_2H_2^{2-}$ rather than HN=NH. The ¹H NMR spectrum (THF- d_8) of **3** reveals a solution structure similar to that observed in the solid state. A N₂H₄ resonance is noted at 2.54 ppm and a N₂H₂²⁻ resonance at 2.59 ppm. Each of these peaks is split into an apparent doublet when 3 is prepared

Figure 1. Solid-state molecular structures of the core atoms of **3** and **6**. See the SI for complete structures and details.

Scheme 1 2 $R \xrightarrow{P_{r}} F_{e} \xrightarrow{P_{r}} R$ $P \xrightarrow{P_{r}} P$ $P \xrightarrow{P_{r}} P$ P

- N₂

hydrobenzoguinone

(6) R = Ph

(7) R = Ph

using ¹⁵N₂H₄ (¹ $J_{\rm NH}$ = 59.5 Hz for N₂H₂²⁻; ¹ $J_{\rm NH}$ = 72.0 Hz for N₂H₄). The broadness of the doublets precludes the resolution of higherorder N–H and H–H coupling.¹¹ The corresponding ¹⁵N NMR spectrum shows a doublet at -10.0 ppm for N₂H₂²⁻ and a triplet at 58.37 ppm for N₂H₄,¹² both of which collapse into singlets upon ¹H decoupling. Complex **4** displays similar ¹⁵N NMR characteristics (N₂H₂²⁻: 0.86 ppm, doublet, J = 45.2 Hz; N₂H₄: 50.86 ppm, triplet, J = 68.9 Hz).

Whereas Sellmann previously reported a few examples of diiron μ - η^1 : η^1 -HN=NH species,⁸ the bimetallic iron cores of **3** and **4** are unique. Schrock has characterized a ditungsten $(\mu$ - η^1 : η^1 -N₂H₄)(μ - η^2 : η^2 -N₂H₂) complex whose core is closely related to those in **3** and **4**.¹³

Whereas solutions of **3** are stable for days at 60 °C, purple solutions of **4** are thermally unstable even at 22 °C ($t_{1/2} = 4$ h) and decay quantitatively to the isolable green diamagnetic product {[PhBP^{CH₂Cy₃]Fe}(μ - η ¹: η ¹-N₂H₂)(μ -NH₂)₂ (**5**). Signature NMR data for **5** are as follows: Its ¹H NMR spectrum (THF- d_8) features three broad singlets at 16.21, -1.65, and -3.85 ppm, corresponding to bound HN=NH and diastereotopic NH₂⁻ protons, respectively. Each of these ¹H NMR resonances is split into a doublet upon ¹⁵N labeling. Its ¹⁵N NMR spectrum contains a doublet at 419.1 ppm ($^{1}J_{NH} = 65.1$ Hz) that collapses to a singlet upon decoupling of the proton resonance at 16.21 ppm. The NH₂⁻ nitrogens are observed as a triplet at -58.1 ppm (J = 59.5 Hz).}

The solid-state structure of **5** is shown in Figure 2. Both the Fe–N1 bond distance of 1.882(8) Å and the N1–N1' bond distance of 1.283(15) Å are similar to those found in Sellmann's Fe₂(μ - η ¹: η ¹-HN=NH) complex.⁸ In addition, the Fe–N bond-distance contraction of 0.17 Å that occurs upon oxidation of hydrazine to diazene is also consistent with other structurally characterized diazene complexes^{8,14} and is likely due to a combination of the smaller covalent radii of sp²-hybridized nitrogen relative to sp³-hybridized nitrogen and modest back-bonding. Notable in the structure of **5** is the presence of *cis*-diazene. Whereas monosub-

stituted diazenes (HN=NR) are known to bind transition metals in a cis conformation,¹⁵ to our knowledge all known complexes of HN=NH show trans ligation. Hence, 5 appears to be structurally distinct in this context.

The addition of 2.2 equiv of $Pb(OAc)_4$ to red **3** leads to oxidation of the bound N₂H₄¹⁶ to afford green and diamagnetic {[PhBP^{Ph}₃]-Fe}₂(μ - η^{1} : η^{1} -N₂H₂)(μ - η^{2} : η^{2} -N₂H₂) (**6**) as the major product along with release of acetic acid. The solid-state structure of 6 is shown in Figure 1. Most striking is the presence of both an $\eta^1:\eta^1$ -bridging *cis*-HN=NH ligand and a μ - η^2 : η^2 HN-NH²⁻ ligand. To our knowledge, **6** is the only transition-metal complex featuring the N2H2 ligand in each of its limiting states of oxidation. The N1–N2 bond distance of 1.281(5) Å for the ligand assigned as HN=NH is similar to that found for the bridging HN=NH ligand of 5. The N3-N4 bond distance of 1.458(5) Å for the ligand assigned as N₂H₂²⁻ is slightly elongated compared with that of the $N_2H_2^{2-}$ ligand of **3**. The average Fe-N_{diazene} bond distance of 1.89 Å is appreciably shorter than the average Fe-N_{hydrazido²⁻} bond distance of 1.99 Å.

As was observed for **3** and **4**, the structure of **6** is preserved in solution. In the ¹H NMR spectrum (C_6D_6) of **6**, broad singlets at 13.20 and 4.16 ppm are assigned to the HN=NH and N₂H₂²⁻ protons, respectively; both of these peaks are split into apparent broad doublets when samples of 6 are prepared using ¹⁵N-enriched 6. The ¹⁵N NMR spectrum of 6 contains a doublet at 58.0 ppm $({}^{1}J_{\rm NH} = 58.1 \text{ Hz})$ for the N₂H₂²⁻ nitrogens and a doublet of doublets at 407.5 ppm (${}^{1}J_{\rm NH}$ = 69.2 Hz, $J \approx$ 20 Hz) corresponding to the HN=NH ligand.

Complex 6 can further be oxidized with *p*-benzoquinone to cleanly generate a new diamagnetic species, $\{[PhBP^{Ph}_3]Fe\}_2(\mu-NH)_2$ (7), along with *p*-hydrobenzoquinone as a byproduct. In order to ascertain the fate of the bound diazene, the reaction was analyzed with a Toepler pump apparatus, and the evolution of 1 equiv of N₂ was confirmed. This complex can alternatively be prepared by addition of 5 equiv of *p*-benzoquinone to **3**. The 31 P NMR spectrum of 7 displays a single resonance at 32.5 ppm at 22 °C. The ¹H NMR spectrum shows a single set of [PhBP^{Ph}₃] resonances, with an additional singlet at 25.3 ppm that integrates to one proton per [PhBP^{Ph}₃]; when 7 is prepared using isotopically enriched 3, the singlet at 25.04 ppm is split into a doublet (${}^{1}J_{\text{NH}} = 64.0 \text{ Hz}$). The ¹⁵N NMR spectrum displays a doublet at 563.5 ppm. On the basis of these NMR data as well as IR data (see the SI), the solution structure of 7 is assigned as diferric {[PhBP^{Ph}₃]Fe}₂(μ -NH)₂. The spectroscopic data for the bridging NH ligand in 7 is similar to that previously reported for $\{([PhBP^{Ph}_3]Fe)_2(\mu-NH)(\mu-H)\}\{Na\}$.^{4d}

Figure 2. Solid-state molecular structures of the core atoms of 5 and 7. See the SI for complete structures and details.

Crystals of 7 can be grown from a THF/cyclopentane solution, and its solid-state structure is shown in Figure 2. The bridging imides are disordered over three positions (see the SI) and modeled satisfactorily with a population ratio of 0.93:0.75:0.32. The average Fe-N distance of 1.84 Å is ~0.17 Å longer than that found in {[PhBP^{Ph}₃]Fe₂(μ -NH)(μ -H)}{Na}.^{4d} The average Fe-P distance of 2.33 Å is ~0.075 Å longer than those found in 3 and 6, consistent with its assignment as an antiferromagnetically coupled diiron(III) complex.

In conclusion, we have characterized a series of structurally fascinating diiron $N_x H_y$ species that contain hydrazine, hydrazido, and cis-diazene bridges. Thermal and oxidative transformations also lead to unusual examples of diiron species featuring μ -NH₂ and μ -NH ligands. In certain instances, low-temperature experiments revealed the presence of intermediate species. Ongoing work concerns detailed vibrational characterization of the species described herein, in addition to mechanistic studies.

Acknowledgment. We acknowledge the NIH (GM-070757). Funding for the MIT Department of Chemistry Instrumentation Facility has been provided in part by the NSF (CHE-0234877). C.T.S. is grateful for an NSF graduate fellowship.

Supporting Information Available: Detailed experimental procedures and characterization data for 1-7 and crystallographic details for 3-7 (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Hoffmann, B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2009, 42, 609. (b) Peters, J. C.; Mehn, M. P. In Activation of Small Molecules; J. B.; Rees, D. C. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 17088. (d) Schrock, R. R. Angew. Chem., Int. Ed. 2008, 47, 5512
- (2) Barney, B. M.; Yang, T.-C.; Igarashi, R. Y.; Santos, P. C.; Laryukhin, M.; Lee, H.-I.; Hoffman, B. M.; Deadn, D. D.; Seefeldt, L. C. J. Am. Chem. Soc. 2005, 127, 14960.
- Kästner, J.; Blöchl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
 Kästner, J.; Blöchl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
 For example, see: (a) Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17107. (b) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. *Chem. Soc.* **2001**, *123*, 9222. (c) Betley, T. A.; Peters, J. C. *J. Am. Chem. Soc.* **2003**, *125*, 10782. (d) Brown, S. D.; Mehn, M. P.; Peters, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 13146. (e) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756.
 (5) (a) Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.; Meyer, K. Angew.
- *Chem., Int. Ed.* **2008**, 47, 2681. (b) Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Angew. Chem., Int. Ed. 2009, 48, 3158.
- (6) Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. Biochemistry 2007, 46, 6784.
- (a) Goedken, V. L.; Peng, S.-M.; Molin-Norris, J.; Park, Y.-a. J. Am. Chem. Soc. **1976**, 98, 8391. (b) Sellmann, D.; Shaban, S. Y.; Heinemann, F. W. Eur. J. Inorg. Chem. 2004, 4591. (c) Crossland, J. L.; Zakharov, L. N.; Tyler, D. R. Inorg. Chem. 2007, 46, 10476. (d) Field, L. D.; Li, H. L.; Dalgarno, S. J.; Turner, P. Chem. Commun. 2008, 1680.
- (8) For a diiron η¹.η¹-HN=NH complex, see: Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem. Int. Ed. Engl. **1989**, 28, 1271. For a recent example of a monometallic Fe(η²:N₂H₂) complex, see ref 7d.
 (9) (a) For a terminal Fe−NH₂ complex, see: Fox, D. J.; Bergman, R. G. J. Am.
- Chem. Soc. 2003, 125, 8985. (b) For bridging Fe2(NH2), see: Dahl, L. F.; Costello, W. R.; King, R. B. J. Am. Chem. Soc. 1968, 90, 5422
- (10) For all of the structures presented herein, the protons on the $N_x H_y$ ligands were located in the difference Fourier map and refined semi-freely with the help of restraints on the N-H distances and the Fe-N-H angles while constraining the U_{iso} value of each H atom to-1.2 times the U_{eq} value of the N atom connected to that proton.
- (11) The magnitude of these couplings may be expected to be on the order of 0-10 Hz. See: (a) von Philipsborn, W.; Müller, R. *Angew. Chem., Int. Ed.* Engl. 1986, 25, 383. (b) Smith, M. R., III; Cheng, T. Y.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 8638.
- (12) All of the ¹⁵N NMR chemical shifts are reported relative to liquid NH₃. (13) Blum, L.; Williams, I. D.; Schrock, R. R. J. Am. Chem. Soc. 1984, 106, 8316
- Cheng, T. Y.; Ponce, A.; Rheingold, A. L.; Hillhouse, G. L. Angew. Chem.,
- *Int. Ed. Engl.* **1994**, *33*, 657. (15) (a) Albertin, G.; Antoniutti, S.; Lanfranchi, M.; Pelizzi, G.; Bordignon, E. [Government] [Government] [Covernment]
 [Government] [Government]
 [Government] [Government]
 [Government] [Government]
 [Government] [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Government]
 [Gove
- (16) Smith, M. R., III; Cheng, T. Y.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 8638.
- JA903967Z